Understanding the Compilation and
Execution Process in Computers

co d I " g custumlzahle sourcing

ffﬂﬂwafe production artabia
08 yiitntntane CRTTT) anmomcenent proces software’

| rogram
e T e AU B

trademark business

data development Cﬂl]y Ight shareable free [}I[]lj[l

commumcatmn
'“temetpmgmmmercumpUtercnllabnratmnpo* ility A cating;

custom computing distributable

Sarwar Nazrul

October 30, 2023

Audience and Scope:

This guide is designed for a wide range of readers, from those just starting out in computer
science to experienced developers looking for a quick refresher. It’s perfect for students, curious
learners, and teachers. The document explains in simple terms how computers read and execute
the code that developers write. It starts with the basics, showing how code is turned into a
language that computers can understand.

As the guide progresses, it goes into how computers run this code, making sure to cover
everything in a way that’s easy to grasp. Even when tackling more complex topics like linking
and the environment where the code runs, the guide uses everyday examples to help make these
difficult ideas easier to understand. In this way, the guide aims to provide clear and helpful
information to all its readers, regardless of their previous knowledge or experience.

Introduction:

In the world of software, developers write detailed instructions using a specific programming
language. This creation process is integral to making applications or tools that serve various
purposes. These instructions are shown in Figure 1 as "hello world.c". While these sets of
directions are clear and structured for developers, they're written in a way that our modern
computers can't directly understand or execute.

0110011000100010011000111

1100000001111111110000001
1111000110101010001100011
0011000100010011000111110

nt main() 0000001111111110000001111
{ H 1000110101010001100011001
printf (" dorld!\n") ; Compller 1000100010011000111110000

0001111111110000001111100
0110101010001100011001100
0100010011000111110000000
1111111110000001111100011

hello_world.o

return

hello_world.c

Figure 1: Compilation Process of a C Program

Expanding on this process, the 'Compiler,' a specialized program designed to translate high-level
programming language into machine code, becomes essential. Its primary function is not just to
act as a translator but also to ensure that there's no loss of information or intent. By taking the
written instructions, it meticulously converts them into a streamlined language that the computer
can seamlessly understand, which is purely made up of 1s and 0s. Once transformed into this
new version, termed "hello_world.o", computers can then easily execute the instructions,
allowing the desired software or application to come to life and function as the developer
envisioned.

Compilation Process:

Compilation is like translating a story from one language to another so a computer can
understand it. In essence, it bridges the gap between human ingenuity and machine capability.
Programmers, equipped with their expertise and creativity, script their ideas, and it's the
compiler's job to make these scripts understandable for the computer. It's a vital step where the
ideas and instructions written by programmers are turned into a format that the computer's brain,
the CPU, can work with. The CPU is a powerhouse that performs billions of tasks in a fraction of
a second, and it requires instructions in a specific format to perform at its best [1].

Just as a translator ensures that the essence of a story remains intact across languages, the
compiler ensures that the programmer's intentions are accurately represented in the computer's
language. It's not just about converting words but about preserving the essence, the logic, and the
flow of the original code. This process has several steps to ensure the translation is accurate and
efficient: breaking down complex instructions, optimizing for performance, and finally,
producing the binary code, which is the computer's native tongue. These meticulous steps
guarantee that the software runs smoothly and efficiently on any machine [2].

=

Input

Source Code | 7|

Lexical Analyzer

t—> Stream of Tokens

U

ANALYSIS <

Syntax Analyzer

— Abstract Syntax Tree

|

Semantic Analyzer

5 Parse Tree

i

Intermediate Code Generator

—> Intermediate Code

J

SYNTHESIS <

Code Optimizer

Y Optimized Code

1

Target Code Generator

__, Target Code
Output

Figure 2: Phases of Compiler Design from

Source Code to Target Code Output

s Lexical Analysis: The compiler reads the code
and picks out important parts like names, actions, and
symbols.

s Syntax Analysis.: 1t checks if the code is written
correctly like making sure sentences in a story have
the right structure.

% Semantic Analysis: The compiler makes sure the
code makes sense. It's like checking if the story's
events and characters fit together logically.

% Code Generation: Here, the code is turned into a
language the computer speaks, made up of 1s and Os.
% Optimization: The compiler tries to make the
code run faster and smoother, like editing a story to
make it more exciting.

Execution Process:

After the code is translated into a language the computer understands, it's time for the computer
to act on it. The execution process is where the computer brings the code to life, turning written
instructions into actions. It's a systematic and organized sequence, ensuring that every piece of
code gets its turn and that tasks are performed accurately and efficiently [1]. Here's a more
detailed look at how the computer runs the code:

% Loading: The computer first
places the code in its memory, l

readying it for action. This is like
setting up the stage before a play Decode J
MACHINE

begins, ensuring all props and
START - R A et 3

actors are in place.
Instruction Cycle

s Fetching: The computer reads
similar to how we read sentences oo ‘ '
Store

the instructions one by one,
in a book. Each instruction is
carefully retrieved, ensuring no l
detail is missed.

% Decoding: The computer figures
out what each instruction means,
ensuring it knows the exact ——No
action to take. It's like

Check For Interrupt

Yes ‘l

Service Interrupt

understanding the steps of a
dance routine before performing
it.

Figure 3: CPU Instruction Cycle.

% Executing: The computer carries out the instructions, like following a step in a recipe. It
uses its internal components to perform the required actions, ensuring accuracy.

% Storing Results: After performing the task, the computer saves the outcome for future
reference. This is crucial as results might be needed for subsequent instructions or tasks.

% Handling Interrupts: Sometimes, the computer encounters urgent tasks or errors. It stops
to address them before continuing with the main tasks. Think of it as a detour on a road
trip, where you briefly divert from the main path to address something important.

% Termination: When all tasks are completed, the computer stops running the code.

Computers are incredibly fast and can go through these steps billions of times in just a second,
allowing them to perform a wide range of functions we rely on daily.

Linking:

Programs often consist of multiple code files or use external libraries. A linker combines these
separate pieces into a single executable file, resolving any references between them [2]. Linking
is like piecing together a puzzle in software creation. After we've prepared individual pieces of
code, we need to join them to make a complete, working program. The linker does this by
connecting different code parts and making sure they work well together. There are two main
ways to link: static and dynamic. With static linking, everything the program needs is packed
into one big file. Dynamic linking, however, uses common parts shared by other programs. It's
like multiple toys using the same batteries. The linker also adjusts where things are stored in the
computer's memory and keeps track of all the program's parts, making sure everything runs
smoothly.

N /k
Source Object
file file]
/_ /__
/_M /_\E
Source Object 8 3 Executable
file file > Linker — = go
R i
N N
Source Object Program
file file e library
/_ /—_

Figure 4: Multi-file Compilation and Linking Process in Software Development

=2 Program A Program B Static
_:.Sc Linking
= 2
=1 il
g Static Libraries Static Libraries c?trinr:ée
(*.a) (*.b)
Program A Program B

Dynamic Linking

L Shared libraries _3

(*.so) Dynamic Linking
at run-time

Figure 5: Static vs. Dynamic Linking in software programs.

Runtime Environment:

The runtime environment is a special system that helps software run correctly and efficiently. It
serves as a bridge between the program and the underlying computer system [3]. After a program
is created, this environment ensures it operates smoothly, providing a stable foundation. It
manages memory, making sure the software uses it properly and doesn't waste any. It also
guarantees the consistency of operations, maintaining the delicate balance between the software
and hardware.

The environment plays a pivotal role in how software interacts with devices. It ensures that the
software works on various computers and systems, adapting to different hardware configurations.
If there are unexpected issues or errors, the environment handles them, offering solutions or
bypassing them to ensure the software's continuity. It keeps everything secure, setting up
protective barriers against potential threats [3]. Additionally, it allows the software to access
computer files, connect to the internet, and interface with other software. The environment
facilitates multitasking, letting different parts of a program run simultaneously. Some advanced
runtime environments even possess capabilities to automatically clean up unused memory or
optimize performance. Essentially, the runtime environment is the unsung hero, working behind
the scenes, making sure software functions seamlessly and efficiently.

PATA-0)

pes—paTa-03
4
ro bepeer vy

e r—————

P

Figure 6. Digital Data Landscape.

Conclusion:

Software development is like building a complex puzzle where every piece has a unique place.
The processes of compilation and execution are crucial in this journey. Compilation is about
transforming the code we write into a language that computers can grasp. Execution, on the other
hand, is when the computer acts on that language. This means it starts doing what the code tells it
to, like opening an app or saving a file. Linking is like the puzzle's connectors, tying different
parts of code together.

Another vital piece of this puzzle is the runtime environment. It ensures that everything runs
without hiccups. While most of us just enjoy using our favorite apps, there's a lot happening in
the background. Every click, every sound, and every movement on the screen happens because
of these intricate processes. They make sure our apps work well and are safe from glitches or
threats. Each step, from the start to the finish, showcases the wonders of technology. So, the next
time you use a software or play a game, remember the amazing processes behind it. As we move
forward, these processes will only evolve, making our tech experiences even more seamless and
engaging.

Source program

Le=ical
analysis -
Lexlcal tokens T SIRCE
Syntactic _-——— - == PRSERAM
analysis
+ - BECOGMNITION
Symbal Farze tree T
table / * o " FHASES
Cther Semantic
-'-_‘_‘_‘—-- .
tables analysis
\\\ +
\ Intermefiate code
Cptimization .
Cbject code fram
GEIECT e o +) other compilations
o Cptimized intermediate l
-7 cipde
CODE -
: Chject A Executable
GEMERATISN ~ ===~ - Code generation — Linking [
FRASED COMPILATION LOADING

Figure 7: Flowchart depicting the stages of program compilation and execution.

Works Cited:

1. A. Aho, Instruction Cycle Explained: Fetch, Decode, Execute Cycle Step-by-Step: Learn
Computer Science, 2021. [online]. Available:

www.learncomputerscienceonline.com/instruction-cycle/. Accessed: Oct. 6, 2023.

2. A. Stec, How Compilers Work: Baeldung, 2023. [online]. Available:
www.baeldung.com/cs/how-compilers-work. Accessed: Oct. 17, 2023.

3. T. Truong, What Is Runtime Environment?: Under The Hood Learning, 2021. [online].

Available: www.underthehoodlearning.com/what-is-runtime-environment/. Accessed:
Oct. 17, 2023.

Figure 1
Compiler Shematic. (2018, March 21). HPCWIKI.
https://hpc-wiki.info/hpe/File:Compiler Shematic.png

Figure 2
Six Phases of the Compilation Process. (2017, February 9). KTTPRO.

https://www.kttpro.com/wp-content/uploads/2017/02/Compiler-1024x792.png

Figure 3
CPU instruction cycle. (2021, August 21). Learn Computer Science.

https://en.wikipedia.org/wiki/Multi-pass _compiler

Figure 4
Linker and Loader. (2019, October 17). Digital Learning.
https:/1 1 m/-n2U0rzZz001/XahJSBd WAI/AAAAAAAAAfwW/OT4-40Ch-TwQsH

Q90PqeeWsJj1CkDJI3wCL.cBGAsYHQ/s1600/linker-and-loader-5-638.jpg

Figure 5
Static vs. Dynamic linking in software programs. (2023, March 20). Baeldung.

https://www.baeldung.com/cs/dynamic-linking-vs-dynamic-loading

Figure 6
Digital Data Landscape. (2021, June 15). Docusnap.
https://www.docusnap.com/it-documentation/no-unwanted-software-in-the-company/#

Figure 7
Multi-pass compiler. (2023, August 28). Wikipedia.

https://en.wikipedia.org/wiki/Multi-pass_compiler

http://www.learncomputerscienceonline.com/instruction-cycle/
http://www.baeldung.com/cs/how-compilers-work
http://www.underthehoodlearning.com/what-is-runtime-environment/
https://hpc-wiki.info/hpc/File:Compiler_Shematic.png
https://www.kttpro.com/wp-content/uploads/2017/02/Compiler-1024x792.png
https://en.wikipedia.org/wiki/Multi-pass_compiler
https://1.bp.blogspot.com/-n2U0rzZzoOI/XahJ5Bd_W4I/AAAAAAAAAfw/OT4-40Ch-TwQsHQ9OPqeeWsJj1CkDJI3wCLcBGAsYHQ/s1600/linker-and-loader-5-638.jpg
https://1.bp.blogspot.com/-n2U0rzZzoOI/XahJ5Bd_W4I/AAAAAAAAAfw/OT4-40Ch-TwQsHQ9OPqeeWsJj1CkDJI3wCLcBGAsYHQ/s1600/linker-and-loader-5-638.jpg
https://www.baeldung.com/cs/dynamic-linking-vs-dynamic-loading
https://www.docusnap.com/it-documentation/no-unwanted-software-in-the-company/#
https://en.wikipedia.org/wiki/Multi-pass_compiler

